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The past few years have witnessed considerable progress in solid- 1.0
state NMR toward atomic-resolution structural analysis of biological
macromolecule$.This is relevant for membrane proteins, protein .. 08F
assemblies, and enzymsubstrate complexes not earlier amenable %
for structural analysis because of low molecular tumbling or lack g 061
of suitable crystals. A key factor in the progress of solid-state NMR 5
is the development of methods that enable the achievement of high- Z04r
resolution spectra with detailed structural information. Among =
different approaches, the combination of magic-angle-spinning 02
(MAS) with radio frequency (rf) irradiation for selective reintroduc- 00

tion of dipole-dipole interactions has proven to be particularly 0.0
useful. Experiments “recoupling” specific horfidor heteronucleér©
dipolar couplings enable transfer of magnetization from atom to Figure 1. N to $3C* coherence transfer efficiencies calculated for a powder
atom in the molecule to provide protocols for spectral assignment (if%yzine (400E"gg;°rl""§;"i§(;;’\g: 10'%hp1pé“k’|7_?‘ :’\A%é7£f?pis_((13(?)
similar _to t,hose used in I?qUid'StaFe ,'\IMlR'LikeWise’ dipo"?r . E)r obtirpr)]paTc;’Z)cngol-sedll?deﬁces_(solid) ;)n\éwDCP unéer hor}log:;]eer:)%(ses(———)
recoupling is fundamental in establishing structural constraints in as well as 5%¢+) and 10% {-+-+-) Lorentzian inhomogeneous rf fields
terms of internuclear distand@snd torsion angle®s. (percentage reflects full width of the rf profile at half-height relative to the
The success of biological solid-state NMR critically depends on nominal rf field strength). For DCP, the nominal rf field strengths were

; P wxinl2t = 35 kHz andwic/27 = 25 kHz. For comparison, we included
the performance of the recoupling methods used as building blocksefficiencies for DCP with'a 10% finear ramp o /2 (around 25 kHz)

in the multiple-dimensional experiments. They have to provide the fom 0 to 2 ms using ideak{) and 5% Lorentzian inhomogeneous-{)
most efficient transfer within the shortest possible time while being rf fields, as well as numerically optimized adiabatic-passage CP experiments
sufficiently specific that loss of coherence by transfer to undesired gSing.wn,N/Zn(lsN) = 37 kHz and a tangential sweep around 47 kHz on
spins is avoided. With these criteria, a large number of recoupling *°C Without ¢+) and with 5% Lorentzian inhomogeneity ). Solid circles

. . N refer to°“DCP experiments optimized under inhomogeneous f fields.
methods have been designed, typically based on intuition and
analytical tools such as effective Hamiltonian thebrlternatives,
such as numericBland experimental search for experimelitsave
been more sparse.

In this Communication, we describe for the first time application
of optimal control theor¥ for systematic design of solid-state NMR
experiments. Optimal control theory, taking its origin in economy
and engineering, have previously been used for optimizing experi-
ments in coherent optid§, magnetic resonance imagifyand
liquid-state NMR2° Here it is applied for the development of solid-
state NMR dipolar recoupling experiments, where the challenge is
to minimize the loss of signal due to crystallite-orientation
dependencies while coping with effects from anisotropic shielding,
desires regarding operative chemical shift ranges, and instrumenta
imperfections. Consideration of these effects is difficult by analytical
means, implying that we here explore a setup with integration of

optimal control theory and numerical simulations using SIMP- than typically recommended for AP-GPThis is remarkable, but

”n . o ; . f
SONZ" In this manner, it is possible to ex_plon al experlm_en_ta_d it is obviously also of interest to consider the performance of DCP,
degrees of freedom and undertake the formidable task of optlmlzmgIinearly ramped DCP, AP-CP, and optimal control sequences in

experiments in terms of thousands of control variables being the presence of inhomogeneous rf fields. In typical cases, the
amplitudes and phases of irradiation on two rf channels in small efficiency of DCP and AP-CP is reduced by more tha|+50%y
steps over the desired excitation period. as illustrated in Figure 1. For comparison, Figure 1 includes points
representative for optimal control DCFPCDCP) experiments

Taking >N to 13C* coherence transfer in a powder8€,,*>N-
labeled glycine spinning at 10 kHz as an example, Figure 1 shows
calculated transfer efficiencies achievable by optimal control
experiments along with efficiencies for double-cross-polarization
(DCPY and adiabatic-passage cross-polarization (APLG&peri-
ments. DCP is the most frequently used experimentigrto 13C
coherence transfers, and with the present relatively small chemical
shielding anisotropies it is among the most efficient experiments
for this purpose. The optimal control sequences were calculated
by digitizing the rf irradiation in steps of Gs and setting upper
limits of 33 and 37 kHz on thé’N and 3C rf field strengths,
Irespectively. It is clear from Figure 1 that optimal control provides
a means to obtain larger transfer efficiencies than the 72% offered
by DCP, indicating a more efficient elimination of the crystallite
orientation dependency thanencoding at transfer times shorter

I'Lrjgci:\f]er{issig]:fu/?\?\;g?ssﬁa\nUnchen. optimized under the assumption of 5% Lorentzian (matched the
' Harvard University. inhomogeneity in our probe slightly better than a 9.2% Gaussian
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demonstrates that substantial improvements of typical experiments
may readily be obtained. It is foreseen that similar gains may be
obtained for many of the building blocks used in current solid-
state NMR experiments. Thus, the optimal control approach
presented in this paper may have a substantial impact on the next
generations of solid-state NMR experiments in applications ranging
from materials science to biology.
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